4 research outputs found

    Visual 3-D SLAM from UAVs

    Get PDF
    The aim of the paper is to present, test and discuss the implementation of Visual SLAM techniques to images taken from Unmanned Aerial Vehicles (UAVs) outdoors, in partially structured environments. Every issue of the whole process is discussed in order to obtain more accurate localization and mapping from UAVs flights. Firstly, the issues related to the visual features of objects in the scene, their distance to the UAV, and the related image acquisition system and their calibration are evaluated for improving the whole process. Other important, considered issues are related to the image processing techniques, such as interest point detection, the matching procedure and the scaling factor. The whole system has been tested using the COLIBRI mini UAV in partially structured environments. The results that have been obtained for localization, tested against the GPS information of the flights, show that Visual SLAM delivers reliable localization and mapping that makes it suitable for some outdoors applications when flying UAVs

    Semantic modelling of space

    No full text
    A cornerstone for robotic assistants is their understanding of the space they are to be operating in: an environment built by people for people to live and work in. The research questions we are interested in in this chapter concern spatial understanding, and its connection to acting and interacting in indoor environments. Comparing the way robots typically perceive and represent the world with findings from cognitive psychology about how humans do it, it is evident that there is a large discrepancy. If robots are to understand humans and vice versa, robots need to make use of the same concepts to refer to things and phenomena as a person would do. Bridging the gap between human and robot spatial representations is thus of paramount importance
    corecore